kết quả từ 1 tới 12 trên 12

Đề thi thử đại học môn toán 2012 - Tổng hợp

  1. #1
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Đề thi thử đại học môn toán 2012 - Tổng hợp

    De thi thu dai hoc mon toan 2012

    PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)

    Câu I (2 điểm) Cho hàm số (Cm), m là tham số thực.
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi
    2. Chứng minh rằng với mọi m đường thẳng luôn cắt đồ thị (Cm) tại hai điểm phân biệt A B. Tìm m sao cho tam giác OAB có bán kính đường tròn ngoại tiếp bằng , trong đó O là gốc tọa độ.
    Câu II (2 điểm)
    1. Giải phương trình:
    2. Giải bất phương trình:
    Câu III (1 điểm) Tính tích phân:
    Câu IV (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng đường chéo Biết SA vuông góc BD, cạnh bên SBvuông góc AD và (SBD) tạo với mặt đáy góc 600. Tính thể tích hình chóp S.ABCD và khoảng cách giữa hai đường thẳng ACSB theo a.
    Câu V (1 điểm) Cho là các số thực đôi một khác nhau. Chứng minh rằng:
    II. PHẦN RIÊNG(3 điểm) Thí sinh chỉ được làm một trong hai phần
    1.Theo chương trình Chuẩn
    Câu VI.a (2 điểm)
    1. Trong mặt phẳng Oxy, cho tam giác ABC, phương trình đường trung trực cạnh BC và trung tuyến xuất phát từ đỉnh C lần lượt tương ứng là . Tìm tọa độ các đỉnh B, C của tam giác.
    2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và điểm . Viết phương trình mặt phẳng (P) đi sao cho khoảng cách từ I đến (P) là lớn nhất.
    Câu VII.a (1 điểm) Tìm môđun của số phức z, biết: .
    2.Theo chương trình Nâng cao
    Câu VI.b (2 điểm)
    1. Trong mặt phẳng Oxy, cho đường tròn và điểm . Đường tròn có tâm , tiếp xúc và đi qua trung điểm của . Viết phương trình đường tròn sao cho bán kính của đường tròn này là nhỏ nhất.
    2. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng . Viết phương trình mặt cầu (S) có tâm nằm trên mặt phẳng , đi qua điểm , tiếp xúc và cắt đường thẳng tại hai điểm B, Csao cho
    Câu VII.b (1 điểm) Giải phương trình:
    ———- Hết ———-

    Cập nhật bên dưới

    Quick reply to this message Trả lời       

  2. #2
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    Câu I (2 điểm) Cho hàm số , là tham số thực.
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi
    2. Cho hai điểm . Tìm để trên đồ thị có hai điểm cách đều hai điểm và diện tích tứ giác bằng .
    Câu II (2 điểm)
    1. Giải phương trình: .
    2. Giải hệ phương trình:
    Câu III (1 điểm) Tính tích phân: .
    Câu IV (1 điểm) Cho hình chóp có đáy là hình vuông cạnh bằng . Biết đường thẳng chia mặt phẳng thành hai nữa mặt phẳng, hình chiếu của đỉnh lên mặt phẳng thuộc nữa mặt phẳng chứa điểm . Cạnh bên vuông góc với và có độ dài bằng , mặt phẳng tạo với mặt đáy góc . Tính thể tích hình chóp và khoảng cách giữa hai đường thẳng theo .
    Câu V (1 điểm) Cho là các số thực dương thỏa mãn .
    Chứng minh rằng: .
    II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần
    1.Theo chương trình Chuẩn
    Câu VI.a (2 điểm)
    1. Trong mặt phẳng , cho hình thoi có phương trình cạnh . Đường thẳng đi qua điểm , đường thẳng đi qua điểm . Tìm tọa độ các đỉnh của hình thoi, biết độ dài và điểm có hoành độ lớn hơn .
    2. Trong không gian với hệ tọa độ , cho vuông cân tại với . Lập phương trình đường thẳng , biết đi qua đỉnh của , nằm trong mặt phẳng và tạo với mặt phẳng góc .
    Câu VII.a (1 điểm) Tìm số phức , biết .
    2. Theo chương trình Nâng cao
    Câu VI.b (2điểm)
    1. Trong mặt phẳng , cho elip . Tìm tọa độ các điểm thuộc , có hoành độ dương sao cho tam giác vuông tại và có diện tích nhỏ nhất.
    2. Trong không gian với hệ tọa độ , cho mặt phẳng và đường thẳng . Mặt cầu có tâm nằm trên đường thẳng và giao với mặt phẳng theo một đường tròn, đường tròn này với tâm tạo thành một hình nón có thể tích lớn nhất. Viết phương trình mặt cầu , biết bán kính mặt cầu bằng .
    Câu VII.b (1 điểm) Gọi là hai nghiệm của phương trình trên tập số phức. Tính
    ———- Hết ———-

  3. #3
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    Câu I: Cho hàm số .
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
    2. Qua điểm uốn của đồ thị , viết phương trình đường thẳng cắt đồ thị tại hai điểm khác sao cho tam giác vuông tại , trong đó là điểm cực đại của đồ thị .
    Câu II:
    1. Giải phương trình .
    2. Xác định tham số để hệ phương trình sau có nghiệm

    Câu III: Tính tích phân
    Câu IV: Cho hình chóp tứ giác , đáy là hình vuông cạnh , mặt bên là tam giác đều và vuông góc với mặt phẳng đáy . Tính thể tích khối nón có đường tròn đáy ngoại tiếp tam giác và đỉnh khối nón nằm trên mặt phẳng .
    Câu V: Tìm giá trị nhỏ nhất của biểu thức

    trong đó là ba số thực dương tùy ý.
    Câu VIa:
    1. Trong mặt phẳng với hệ tọa độ Đề-các , lập phương trình đường tròn có bán kính , có tâm nằm trên đường thẳng và đường tròn đó cắt đường thẳng tại hai điểm sao cho góc .
    2. Trong không gian với hệ tọa độ Đề-các , cho ba điểm , , . Tìm điểm trên mặt phẳng sao cho tổng có giá trị nhỏ nhất.
    Câu VIIa: Giải phương trình .

  4. #4
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    De thi thu dai hoc 2012 so 4

    Câu I: Cho hàm số .
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
    2. Qua điểm uốn của đồ thị , viết phương trình đường thẳng cắt đồ thị tại hai điểm khác sao cho tam giác vuông tại , trong đó là điểm cực đại của đồ thị .
    Câu II:
    1. Giải phương trình .
    2. Xác định tham số để hệ phương trình sau có nghiệm

    Câu III: Tính tích phân
    Câu IV: Cho hình chóp tứ giác , đáy là hình vuông cạnh , mặt bên là tam giác đều và vuông góc với mặt phẳng đáy . Tính thể tích khối nón có đường tròn đáy ngoại tiếp tam giác và đỉnh khối nón nằm trên mặt phẳng .
    Câu V: Tìm giá trị nhỏ nhất của biểu thức

    trong đó là ba số thực dương tùy ý.
    Câu VIa:
    1. Trong mặt phẳng với hệ tọa độ Đề-các , lập phương trình đường tròn có bán kính , có tâm nằm trên đường thẳng và đường tròn đó cắt đường thẳng tại hai điểm sao cho góc .
    2. Trong không gian với hệ tọa độ Đề-các , cho ba điểm , , . Tìm điểm trên mặt phẳng sao cho tổng có giá trị nhỏ nhất.
    Câu VIIa: Giải phương trình .

  5. #5
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    De thi thu dai hoc so 5 2012

    PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm)
    Câu I. (2.0 điểm) Cho hàm số có đồ thị
    Khảo sát và vẽ đồ thị
    Tìm để đường thẳng cắt tại ba điểm phân biệt đồng thời là phân giác trong của góc tạo bởi hai đường thẳng
    Câu II. (2.0 điểm)
    Giải phương trình:

    Giải hệ phương trình sau trên tập số thực:

    Câu III. (1.0 điểm) Tính tích phân:

    Câu IV. (1.0 điểm) Cho hình chóp có đáy là hình thoi; hai đường chéo và cắt nhau tại hai mặt phẳng cùng vuông góc với mặt phẳng Biết khoảng cách từ điểm đến mặt phẳng ) bằng tính thể tích khối chóp theo
    Câu V. (1.0 điểm) Cho các số thực thỏa mãn Chứng minh rằng

    PHẦN RIÊNG (3.0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
    A. Theo chương trình Chuẩn
    Câu VI.a. (2.0 điểm)
    Trong mặt phẳng với hệ tọa độ cho đường tròn và đường thẳng có phương trình Viết phương trình đường tròn có bán kính bằng tiếp xúc ngoài với sao cho khoảng cách từ tâm của nó đến là lớn nhất.
    Trong không gian với hệ tọa độ cho mặt cầu và đường thẳng có phương trình Lập phương trình mặt cầu có tâm thuộc đường thẳng tiếp xúc với mặt cầu ) và có bán kính gấp đôi bán kính của mặt cầu
    Câu VII.a. (1.0 điểm) Trong tất cả các số phức thỏa mãn đồng thời hai điều kiện hãy tìm số phức có mô-đun lớn nhất. (Ở đây được hiểu là phần thực của số phức )
    B. Theo chương trình Nâng cao
    Câu VI.b. (2.0 điểm)
    Trong mặt phẳng tọa độ cho hai đường tròn Tìm tọa độ các đỉnh của hình vuông biết rằng thuộc thuộc thuộc đường thẳng và tung độ điểm lớn hơn
    Trong không gian với hệ tọa độ cho tam giác có đỉnh đường cao có phương trình Đường thẳng đi qua điểm và tiếp xúc với mặt cầu Tìm tọa độ đỉnh của tam giác
    Câu VII.b. (1.0 điểm) Cho khai triển nhị thức Hãy xác định hệ số của số hạng có tỉ số lũy thừa của bằng biết rằng

  6. #6
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    De thi thu dai hoc so 7

    PHẦN CHUNG CHO MỌI THÍ SINH (7 ĐIỂM)
    Câu I. Cho hàm số , m là tham số thực
    1. Khảo sát và vẽ đồ thị hàm số khi
    2. Tìm để hàm số có cực đại cực tiểu và khoảng cách từ điểm đến đường thẳng đi qua điểm cực, đại cực tiểu của hàm số là lớn nhất.
    Câu II.
    1. Giải phương trình:
    2. Giải hệ phương trình:
    Câu III. Tính tích phân:
    Câu IV. Cho hình lăng trụ tam giác có đáy là tam giác vuông tại , . Biết đỉnh cách đều các đỉnh và khoảng cách từ đến mặt phẳng bằng . Tính thể tích khối chóp theo và tính góc tạo bởi mặt phẳng và đáy
    Câu V. Cho các số thực dương . Tìm giá trị nhỏ nhất của biểu thức.

    PHẦN RIÊNG (3 ĐIỂM)
    I. Theo chương trình nâng cao
    Câu VIa.
    1. Trong mặt phẳng tọa độ cho đường tròn . Viết phương trình đường thẳng cắt hai trục tọa độ tại và tiếp xúc với đường tròn tại điểm sao cho là trung điểm của .
    2. Trong không gian với hệ trục tọa độ cho hai mặt phẳng và điểm . Viết phương trình đường thẳng vuông góc với giao tuyến của hai mặt phẳng đồng thời cắt hai mặt phẳng tại sao cho là trung điểm của
    Câu VIIa. Giải phương trình:
    II. Theo chương trình nâng cao
    Câu VIb.
    1. Trong mặt phẳng tọa độ cho tam giác chân đường phân giác trong góc tâm vòng tròn ngoại tiếp tam giác là . Tìm tọa độ các đỉnh của tam giác .
    2. Trong không gian với hệ trục tọa độ cho mặt phẳng và hai đường thẳng . Chứng minh chéo nhau. Lập phương trình đường thẳng [FONT=Euclid][SIZE=3]song song với mặt phẳng cắt lần lượt tại sao cho độ dài nhỏ nhất.
    Câu VIIb. Giải phương trình:

  7. #7
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    PHẦN CHUNG CHO MỌI THÍ SINH (7 ĐIỂM)
    Câu I. Cho hàm số
    1. Khảo sát và vẽ đồ thị hàm số
    2. Tìm để trên đồ thị hàm số tồn tại đúng 2 tiếp tuyến có cùng hệ số góc đồng thời đường thẳng đi qua 2 tiếp điểm cắt các trục toạ độ tại sao cho
    Câu II.
    1. Giải phương trình:
    2. Giải bất phương trình:
    Câu III. Tính tích phân:
    Câu IV. Cho hình chóp tam giác đều có khoảng cách từ đến bằng , góc tạo bởi và mặt phẳng .Gọi là trung điểm của , là trung điểm của . Tính thể tích khối chóp và khoảng cách giữa hai đường thẳng theo
    Câu V. Cho các số thực thỏa mãn điều kiện: .
    Tìm giá trị lớn nhất và giá trị nhỏ nhất của
    PHẦN RIÊNG (3 ĐIỂM)
    I. Theo chương trình nâng cao
    Câu VIa.
    1. Trong mặt phẳng tọa độ cho tam giác có phương trình đường phân giác trong góc , đường cao xuất phát từ đỉnh . Cạnh đi qua điểm . Tìm tọa độ các đỉnh của tam giác biết diện tích của tam giác bằng .
    2. Trong không gian với hệ trục tọa độ cho hai mặt phẳng với là tham số thực và . Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng biết khoảng cách từ điểm đến đường thẳng là lớn nhất.
    Câu VIIa. Cho số phức thỏa mãn điều kiện . Chứng minh rằng
    II. Theo chương trình nâng cao
    Câu VIb.
    1. Trong mặt phẳng tọa độ cho đường thẳng và đường tròn Tìm điểm thuộc đường thẳng sao cho qua kẻ được các tiếp tuyến đến đường tròn với là các tiếp điểm đồng thời khoảng cách từ điểm đến đường thẳng đi qua là lớn nhất.
    2. Trong không gian với hệ trục tọa độ cho Gọi là đường thẳng qua và vuông góc với mặt phẳng . Tìm điểm thuộc sao cho mặt cầu ngoại tiếp tứ diện có bán kính bằng .
    Câu VIIb. Cho các số phức thỏa mãn điều kiện . Tính giá trị của biểu thức:

  8. #8
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
    Câu I (2 điểm) Cho hàm số
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
    2. Tìm tất cả các giá trị của tham số để đường thẳng cắt đồ thị tại 2 điểm phân biệt sao cho
    Câu II (2 điểm)
    1. Giải phương trình:

    Câu III (1 điểm) Tính tích phân: .
    Câu IV (1 điểm) Cho hình chóp có đáy là hình bình hành với . Cạnh và vuông góc với mặt phẳng đáy. Gọi lần lượt vuông góc với tương ứng . Tính thể tích khối tứ diện và khoảng cách giữa hai đường thẳng theo
    Câu V (1 điểm) Cho là các số thực dương thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức

    .
    II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần
    1.Theo chương trình Chuẩn
    Câu VI.a (2 điểm)
    1. Trong mặt phẳng Oxy, cho tam giác . Biết diện tích tam giác bằng và bán kính đường tròn ngoại tiếp bằng . Tìm tọa độ điểm có hoành độ dương.
    2. Trong không gian Oxyz, lập phương trình mặt phẳng đi qua , song song với đường thẳng và cách đường thẳng một khoảng bằng
    Câu VII.a (1 điểm) Tìm các số phức . Biết .
    2. Theo chương trình Nâng cao
    Câu VI.b (2 điểm)
    1. Trong mặt phẳng Oxy, cho tam giác có diện tích bằng . Trọng tâm nằm trên đường thẳng . Biết , tìm tọa độ điểm.
    2. Trong không gian Oxyz, viết phương trình đường thẳng đi qua điểm , cắt đường thẳng và cắt mặt cầu tại hai điểm sao cho .
    Câu VII.b (1 điểm) Cho hai số phức thỏa mãn , . Tính .

    ———- Hết ———-

  9. #9
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
    Câu I.(2 điểm) Cho hàm số:
    1. Khảo sát và vẽ đồ thị hàm số khi
    2. Gọi là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng . Tìm để tiếp tuyến cắt đồ thị hàm số tại điểm khác sao cho tam giác cân tại
    Câu II. (2 điểm)
    1. Giải phương trình:
    2. Tìm để phương trình sau có nghiệm thực:
    Câu III. (1 điểm) Tính tích phân:
    Câu IV. (1 điểm) Cho hình hộp chữ nhật có cạnh . Đường thẳng tạo với đường thẳng một góc , đường chéo tạo với mặt bên một góc . Tính thể tích khối chóp và cosin góc tạo bởi
    Câu V. (1 điểm) Cho là các số thực thỏa mãn điều kiện .
    Tìm giá trị nhỏ nhất của
    II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần
    1.Theo chương trình Chuẩn
    Câu VI a.(2 điểm)
    1. Trong mặt phẳng tọa độ cho hình thang vuông . Biết . Trung điểm của BC là , đường thẳng AD có phương trình: . Tìm tọa độ điểm A.
    2. Trong không gian với hệ trục tọa độ, cho đường thẳng . Xét hình bình hành ABCD có A(1;0;0), C(2;2;2),. Tìm tọa độ điểm B biết diện tích hình bình hành ABCD bằng
    Câu VIIa. (1 điểm) Tính tổng sau:
    2.Theo chương trình Nâng cao.
    Câu VI b. (2 điểm)
    1. Trong mặt phẳng tọa độ cho hình thang vuông ABCD tại A và D có đáy lớn là CD, cạnh
    , cạnh . Biết góc tạo bởi BC và AB bằng , diện tích hình thang ABCD bằng 24. Tìm tọa độ các đỉnh hình thang biết đỉnh B có tung độ dương
    2. Trong không gian với hệ trục tọa độ cho mặt cầu và mặt phẳng (P):. Từ một điểm M trên mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại điểm N. Tìm vị trí của M để .
    Câu VIIb. (1 điểm) Cho là hai số phức liên hợp thỏa mãn điều kiện: là số thực và . Tính .
    ———- Hết ———-

  10. #10
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    PHẦN CHUNG CHO TẤT CẢ THÍ SINH
    Câu I: Cho hàm số
    1. Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho ứng với .
    2. Tìm tất cả các giá trị thực của đề có 3 cực trị với hoành độ 3 điểm cực trị là thoả mãn .
    Câu II:
    1. Giải phương trình: .
    2. Giải phương trình: .
    Câu III:
    Tính tích phân: .
    Câu IV:
    Cho hình chóp có đáy là hình thang vuông tại , , . Gọi là trung điểm , là trung điểm , biết cùng vuông góc với mặt phẳng đáy và khoảng cách giữa 2 đường thẳng bằng . Tính thể tích khối chóp đã cho và khoảng cách từ đến mặt phẳng .
    Câu V:
    Cho là các số thực dương thoả mãn . Chứng minh rằng:

    PHẦN RIÊNG
    A. Theo chương trình chuẩn
    Câu VIa:
    1. Trong mặt phẳng , cho đường tròn có tâm . Tìm điểm thuộc đường thẳng sao cho từ kẻ được 2 tiếp tuyến ( là tiếp điểm) đến đường tròn và khoảng cách từ đến bằng . Biết điểm có hoành độ dương.
    2. Trong mặt phẳng , cho đường thẳng và hai điểm . Tìm điểm trên sao cho tam giác có chu vi nhỏ nhất.
    Câu VIIa:
    Giải phương trình sau trên tập số phức:
    B. Theo chương trình nâng cao
    Câu VIb:
    1. Trong mặt phẳng , cho hình vuông cố định, biết ( là giao điểm của ). Một đường thẳng đi qua cắt các cạnh lần lượt tại . Viết phương trình đường thẳng sao cho độ dài là nhỏ nhất.
    2.Trong mặt phẳng , cho đường thẳng và điểm . Lập phương trình mặt phẳng chứa sao cho khoảng cách từ đến bằng .
    Câu VIIb: Giải phương trình:
    —– HẾT —–

  11. Đã cảm ơn Lê Minh:


  12. #11
    Ðến Từ
    TP. Hồ Chí Minh
    Thành Viên Thứ: 2
    Bài gửi
    10.833

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    PHẦN CHUNG: (Dành cho tất cả các thí sinh) (7 điểm) :
    Câu I (2 điểm):
    Cho hàm số
    1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
    2. Tìm những điểm trên sao cho tiếp tuyến với tại tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng .
    Câu II (2 điểm):
    1. Giải phương trình:
    2. Giải hệ phương trình:
    Câu III (1 điểm) : Tính tích phân:
    Câu IV (1 điểm):
    Cho hình chóp có đáy là hình thoi cạnh . . vuông góc với mặt phẳng . Gọi là trung điểm của . Mặt phẳng đi qua và song song , cắt các cạnh của hình chóp lần lượt tại . Tính thể tích khối chóp .
    Câu V (1 điểm):
    Cho các số thực dương thỏa mãn . Chứng minh rằng:

    PHẦN RIÊNG: (Thí sinh chỉ được chọn một trong hai phần: A hoặc B) (3 điểm) :
    A. Chương trình chuẩn:
    Câu VI.a (2 điểm):
    1. Trong mặt phẳng với hệ tọa độ , cho đường tròn . Viết phương trình đường tròn tâm biết cắt tại các điểm sao cho
    2. Trong không gian với hệ tọa độ , cho đường thẳng và mặt phẳng . Gọi là giao điểm của . Viết phương trình đường thẳng nằm trong sao cho vuông góc với và khoảng cách từ đến bằng .
    Câu VII.a (1 điểm): Chứng minh rằng nếu các số phức thỏa thì
    B. Chương trình nâng cao:
    Câu VI.b (2 điểm):
    1. Trong mặt phẳng với hệ tọa độ , cho tam giác có đình , trọng tâm và trực tâm trùng với gốc tọa độ. Tìm tọa độ các đỉnh và diện tích tam giác biết
    2. Trong không gian với hệ tọa độ , cho hai đường thẳng . Gọi là giao điểm của . Tìm các điểm lần lượt thuộc sao cho tam giác cân tại và có diện tích bằng .
    Câu VII.b (1 điểm):
    Đội tuyển học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách cử 8 học sinh đi dự trại hè sao cho mỗi khối có ít nhất một em được chọn.

  13. #12
    Ðến Từ
    Huyện Đông Hải
    Thành Viên Thứ: 112207
    Giới tính: Nam
    Bài gửi
    8

    Ðề: Đề thi thử đại học môn toán 2012 - Tổng hợp

    wow. ghê quá ha, ai cần mình giải ko liên hệ mình giải cho

Nhãn